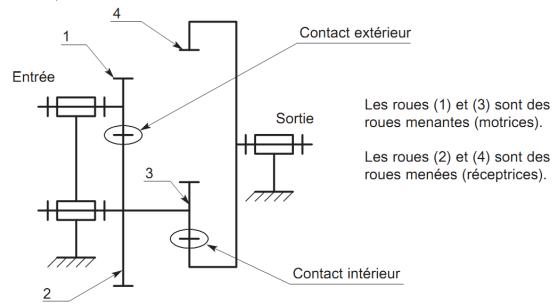
Construction mécanique	Transmission de puissance par obstacle	<i>LTI DELAFOSSE : 2014/2015</i>
<u>Classe</u> : Terminale	Chapitre 8: Train d'engrenages simple	Page 1/3

Objectifs : Au terme de la leçon, je dois être capable de :

- o Définir un train d'engrenages simple ;
- o Reconnaitre un train d'engrenages simple, un contact extérieur et intérieur ;
- o Déterminer le rapport de transmission par train d'engrenages simple.

<u>Prérequis</u>: Notions de transmission de puissance par engrenages.

1- DEFINITION ET TERMINOLOGIE:


Un train d'engrenages est un ensemble constitué d'un ou de plusieurs engrenages qui transmettent un mouvement de rotation avec un rapport de vitesse désiré.

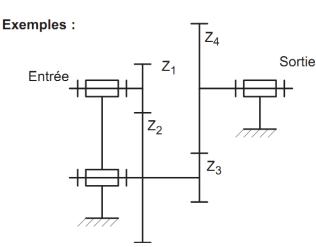
On distingue deux types de trains d'engrenages :

- Les trains simples.
- Les trains épicycloïdaux (ne font pas l'objet de l'étude).

Un train d'engrenages est dit simple quand les axes des différentes roues occupent une position invariable par rapport au bâti.

- Contact extérieur : Contact entre deux roues à denture extérieure.
- Contact intérieur : contact entre une roue à denture extérieure et une roue à denture intérieure (couronne).

2- RAPPORT DE TRANSMISSION:

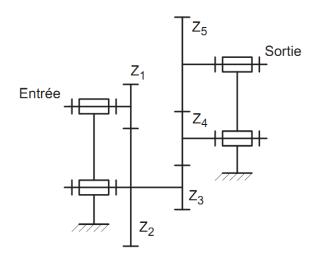

Le rapport de la transmission assurée par un train d'engrenages est le quotient de la vitesse de sortie (Ns) par la vitesse d'entrée (Ne).

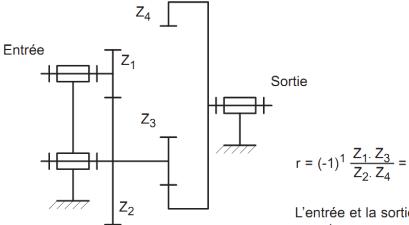
$$r = \frac{Ns}{Ne} = (-1)^n$$
 Produit du nombre de dents des roues menantes
Produit du nombre de dents des roues menées

n : nombre de contacts extérieurs

<u>Remarque</u>: (-1)ⁿ ne concerne pas le contact intérieur, les engrenages coniques et gauches.

Construction mécanique	Transmission de puissance par obstacle	<i>LTI DELAFOSSE : 2014/2015</i>
<u>Classe</u> : Terminale	Chapitre 8: Train d'engrenages simple	Page 2/3

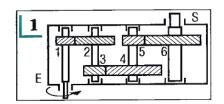



$$r = (-1)^2 \frac{Z_1. Z_3}{Z_2. Z_4} = \frac{Z_1. Z_3}{Z_2. Z_4}$$

L'entrée et la sortie tournent dans le même sens.

r =
$$(-1)^3 \frac{Z_1 \cdot Z_3 \cdot Z_4}{Z_2 \cdot Z_4 \cdot Z_5} = -\frac{Z_1 \cdot Z_3}{Z_2 \cdot Z_5}$$

L'entrée et la sortie tournent en sens inverses.

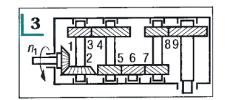


$$r = (-1)^{1} \frac{Z_{1}.Z_{3}}{Z_{2}.Z_{4}} = -\frac{Z_{1}.Z_{3}}{Z_{2}.Z_{4}}$$

L'entrée et la sortie tournent en sens inverses.

EXERCICE 1:

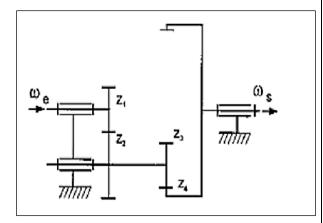
Le réducteur représenté schématiquement se compose de trois trains d'engrenages à roues hélicoïdales ($Z_1 = 32$, $Z_2 = 64$, $Z_3 = 25$, $Z_4 = 80$, $Z_5 = 18$, $Z_6 = 50$ dents). Si $n_1 = 1$ 500 tr/min, déterminer la vitesse de sortie n_6 et le sens de rotation.



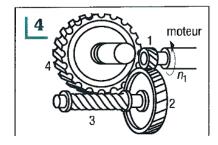
Construction mécanique	Transmission de puissance par obstacle	<i>LTI DELAFOSSE : 2014/2015</i>
<u>Classe</u> : Terminale	Chapitre 8: Train d'engrenages simple	Page 3/3

EXERCICE 2:

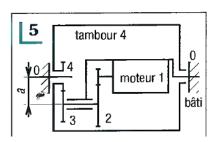
Le réducteur spiroconique proposé a les caractéristiques suivantes :


$$Z_1 = 32$$
, $Z_2 = 40$, $Z_3 = 18$, $Z_4 = 72$, $Z_5 = 22$, $Z_6 = 24$, $Z_7 = 30$, $Z_8 = 17$ et $Z_9 = 34$ dents. Si $n_1 = 1500$ tr/min, déterminer la vitesse de sortie n_9 et le sens de rotation.

EXERCICE 3:

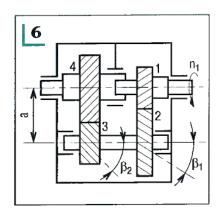

Pour le réducteur à train d'engrenages représenté ci-contre, établir la chaine de transmission de puissance, puis calculer le rapport de réduction et en-déduire la vitesse angulaire de sortie connaissant la vitesse angulaire d'entrée 300 rad/s.

On donne : Z1 = 12 ; Z2= 26 ; Z3= 18 ; Z4= 64.


EXERCICE 4:

Le réducteur à axes orthogonaux se compose de deux roues hélicoïdales ($Z_1 = 24$, $Z_2 = 84$ dents) et d'un système roue et vis sans fin (vis à 4 filets, $Z_4 = 36$ dents). Indiquer, d'après la figure, le sens des hélices de toutes les roues et vis. Calculer le rapport global de réduction et la vitesse de sortie n_4 si $n_1 = 1\,500$ tr/min.

EXERCICE 5:


Le tambour moteur de tapis roulant proposé schématiquement a les caractéristiques suivantes : $n_1 = 1500$ tr/min, deux trains à dentures droites, $Z_4 = 40$, $Z_2 = 67$, rapport de réduction $[n_4/n_1 = 0,1015]$, entraxe commun a = 42 mm et module du couple de roues (3-4) $m_2 = 1,5$ mm. Déterminer Z_3 , Z_1 et le module m_1 du couple de roue (1,2).

EXERCICE 6:

Le réducteur à deux trains d'engrenages hélicoïdaux proposé présente la particularité d'avoir l'arbre d'entrée coaxial à l'arbre de sortie. Engrenage $(1,2): Z_1=30, Z_2=60$, angle d'inclinaison de l'hélice $\beta_1=30^\circ$, module normal $m_n=5$ mm. Engrenage $(3,4): Z_3=22, Z_4=35$, module normal 8 mm. Si l'entraxe est le même pour les deux engrenages, déterminer l'angle de l'hélice β_2 du deuxième train. Calculer le rapport de la transmission et la valeur de n_4 si $n_1=1\,500$ tr/min.

Préciser le sens de rotation.

